VRC3

From NESdev Wiki
Revision as of 19:50, 9 March 2017 by Lidnariq (talk | contribs) (link to nescartdb for game)
Jump to navigationJump to search

The Konami VRC3 is an ASIC mapper apparently used only for the game Salamander. The iNES format assigns mapper 73 to VRC3.



Overview

  • PRG ROM size: Up to 128 KiB
  • PRG ROM bank size: 16 KiB
  • PRG RAM: 8 KiB at $6000
  • CHR: 8 KiB RAM, not swappable
  • Nametable mirroring: Solder pads select vertical or horizontal mirroring
  • Subject to bus conflicts: No

See VRC3 pinout for chip pinout.

Banks

  • CPU $6000-$7FFF: optional 8 KiB PRG RAM bank
  • CPU $8000-$BFFF: 16 KiB switchable PRG ROM bank
  • CPU $C000-$FFFF: 16 KiB PRG ROM bank, fixed to the last bank

Registers

PRG Select ($F000-$FFFF)

7  bit  0
---------
.... .PPP
      |||
      +++- Select 16 KB PRG ROM at $8000


IRQ Latch 0 ($8000-$8FFF)

7  bit  0
---------
.... LLLL
     ||||
     ++++- Bits 0-3 of IRQ latch.

IRQ Latch 1 ($9000-$9FFF)

7  bit  0
---------
.... LLLL
     ||||
     ++++- Bits 4-7 of IRQ latch.

IRQ Latch 2 ($A000-$AFFF)

7  bit  0
---------
.... LLLL
     ||||
     ++++- Bits 8-11 of IRQ latch.

IRQ Latch 3 ($B000-$BFFF)

7  bit  0
---------
.... LLLL
     ||||
     ++++- Bits 12-15 of IRQ latch.


IRQ Control ($C000-$CFFF)

7  bit  0
---------
.... .MEA
      |||
      ||+- IRQ Enable on Acknowledgement (see $D000)
      |+-- IRQ Enable (1=enabled)
      +--- IRQ Mode (1=8-bit counter, 0=16-bit counter)

Any write to this register will acknowledge the pending IRQ. If this register is written to with the E bit set, the 16-bit IRQ counter is reloaded with the 16-bit Latch value (set by writes to $8000-$BFFF).


IRQ Acknowledge ($D000-$DFFF)

7  bit  0
---------
.... ....

Any write to this register will acknowledge the pending IRQ. In addition, the A control bit moves to the E control bit, enabling or disabling IRQs. Writes to this register do not affect the current state of the IRQ counter.


IRQ Counter Operation

VRC3 IRQs operate differently from other VRCs. The counter is 16 bits instead of 8 bits, and there is no scanline mode, only CPU cycle mode. Other aspects, however, are very similar.

IRQs on this mapper are generated through a 16-bit counter, which is incremented each CPU cycle (if enabled). When it overflows from $FFFF, an IRQ is generated, and the counter is reloaded with the 16-bit latch value.

When the IRQ mode bit (M) is set, the upper 8 bits of the counter are ignored (and never incremented) and IRQs are generated when the lower 8 bits overflow from $FF. When the IRQ is triggered, only the low 8 bits are reloaded from the latch value. Reloading with a write to $C000 with E set will always reload all 16 bits, regardless of mode.

When IRQs are disabled (E control bit clear), the IRQ counter does not increment.

Writing to the acknowledge register at $D000 automatically moves control bit A into control bit E, allowing the IRQ to be easily re-enabled while acknowledging.

References